Tuesday, March 6, 2007

Introduction of Robotics from IBM

Basically a robots consists of:
  • A mechanical device, such as a wheeled platform, arm, or other construction, capable of interacting with its environment
  • Sensors on or around the device that are able to sense the environment and give useful feedback to the device
  • Systems that process sensory input in the context of the device's current situation and instruct the device to perform actions in response to the situation
In the manufacturing field, robot development has focused on engineering robotic arms that perform manufacturing processes. In the space industry, robotics focuses on highly specialized, one-of-kind planetary rovers. Unlike a highly automated manufacturing plant, a planetary rover operating on the dark side of the moon -- without radio communication -- might run into unexpected situations. At a minimum, a planetary rover must have some source of sensory input, some way of interpreting that input, and a way of modifying its actions to respond to a changing world. Furthermore, the need to sense and adapt to a partially unknown environment requires intelligence (in other words, artificial intelligence).

From military technology and space exploration to the health industry and commerce, the advantages of using robots have been realized to the point that they are becoming a part of our collective experience and every day lives.

They function to relieve us from danger and tedium:

  • Safety: Robotics have been developed to handle nuclear and radioactive chemicals for many different uses including nuclear weapons, power plants, environmental cleanup, and the processing of certain drugs.
  • Unpleasantness: Robots perform many tasks that are tedious and unpleasant, but necessary, such as welding or janitorial work.
  • Repetition and precision: Assembly line work has been one of the mainstays of the robotics industry. Robots are used extensively in manufacturing and, more glamorously, in space exploration, where minimum maintenance requirements are emphasized.


Mechanical platforms -- the hardware base

A robot consists of two main parts: the robot body and some form of artificial intelligence (AI) system. Many different body parts can be called a robot. Articulated arms are used in welding and painting; gantry and conveyor systems move parts in factories; and giant robotic machines move earth deep inside mines. One of the most interesting aspects of robots in general is their behavior, which requires a form of intelligence. The simplest behavior of a robot is locomotion. Typically, wheels are used as the underlying mechanism to make a robot move from one point to the next. And some force such as electricity is required to make the wheels turn under command.

Motors

A variety of electric motors provide power to robots, allowing them to move material, parts, tools, or specialized devices with various programmed motions. The efficiency rating of a motor describes how much of the electricity consumed is converted to mechanical energy. Let's take a look at some of the mechanical devices that are currently being used in modern robotics technology.

DC motor: Permanent-magnet, direct-current (PMDC) motors require only two leads, and use an arrangement of fixed- and electro-magnets (stator and rotor) and switches. These form a commutator to create motion through a spinning magnetic field.

AC motor: AC motors cycle the power at the input-leads, to continuously move the field. Given a signal, AC and DC motors perform their action to the best of their ability.

Stepper motor: Stepper motors are like a brushless DC or AC motor. They move the rotor by applying power to different magnets in the motor in sequence (stepped). Steppers are designed for fine control and will not only spin on command, but can spin at any number of steps-per-second (up to their maximum speed).

Servomotors: Servomotors are closed-loop devices. Given a signal, they adjust themselves until they match the signal. Servos are used in radio control airplanes and cars. They are simple DC motors with gearing and a feedback control system.

Driving mechanisms

Gears and chains: Gears and chains are mechanical platforms that provide a strong and accurate way to transmit rotary motion from one place to another, possibly changing it along the way. The speed change between two gears depends upon the number of teeth on each gear. When a powered gear goes through a full rotation, it pulls the chain by the number of teeth on that gear.

Pulleys and belts: Pulleys and belts, two other types of mechanical platforms used in robots, work the same way as gears and chains. Pulleys are wheels with a groove around the edge, and belts are the rubber loops that fit in that groove.

Gearboxes: A gearbox operates on the same principles as the gear and chain, without the chain. Gearboxes require closer tolerances, since instead of using a large loose chain to transfer force and adjust for misalignments, the gears mesh directly with each other. Examples of gearboxes can be found on the transmission in a car, the timing mechanism in a grandfather clock, and the paper-feed of your printer.

Power supplies

Power supplies are generally provided by two types of battery. Primary batteries are used once and then discarded; secondary batteries operate from a (mostly) reversible chemical reaction and can be recharged several times. Primary batteries have higher density and a lower self-discharge rate. Secondary (rechargeable) batteries have less energy than primary batteries, but can be recharged up to a thousand times depending on their chemistry and environment. Typically the first use of a rechargeable battery gives 4 hours of continuous operation in an application or robot.

There are literally hundreds of types and styles of batteries available for use in robots. Batteries are categorized by their chemistry and size, and rated by their voltage and capacity. The voltage of a battery is determined by the chemistry of the cell, and the capacity by both the chemistry and size.


Electronic control

There are two major hardware platforms in a robot. The mechanical platform of unregulated voltages, power and back-EMF spikes, and the electronic platform of clean power and 5-volt signals. These two platforms need to be bridged in order for digital logic to control mechanical systems. The classic component for this is a bridge relay. A control signal generates a magnetic field in the relay's coil that physically closes a switch. MOSFETs, for example, are highly efficient silicon switches, available in many sizes like the transistor that can operate as a solid state relay to control the mechanical systems.

On the other hand, larger sized robots may require a PMDC motor in which the value of the MOSFET's "on" resistance Rds(on) results in great increases in the heat dissipation of the chip, thereby significantly reducing the chip's heat temperature. Junction temperatures within the MOSFET and the coefficients of conduction of the MOSFET package and heat sink are other important characteristics of PMDC motors.

There are two broad families of transistor: bipolar junction transistors (BJT) and field-effect transistors (FET). In BJT devices, a small current flow at the base moderates a much larger current between the emitter and collector. In FET devices, the presence of an electrical field at the gate moderates the flow between the source and drain.

Sensors

Robots react according to a basic temporal measurement, requiring different kinds of sensors.

In most systems a sense of time is built-in through the circuits and programming. For this to be productive in practice, a robot has to have perceptual hardware and software, which updates quickly. Regardless of sensor hardware or software, sensing and sensors can be thought of as interacting with external events (in other words, the outside world). The sensor measures some attribute of the world. The term transducer is often used interchangeably with sensor. A transducer is the mechanism, or element, of the sensor that transforms the energy associated with what is being measured into another form of energy. A sensor receives energy and transmits a signal to a display or computer. Sensors use transducers to change the input signal (sound, light, pressure, temperature, etc.) into an analog or digital form capable of being used by a robot.

Logical sensors: One powerful abstraction of a sensor is a logical sensor, which is a unit of sensing or module that supplies a particular percept. It consists of the signal processing, from the physical sensor, and the software processing needed to extract the percept.

Proprioceptive sensors: Proprioception is dead reckoning, where the robot measures a signal originating within itself.

Proximity sensors: A proximity sensor measures the relative distance between the sensor and objects in the environment.

Infrared (IR) sensors: Another type of active proximity sensor is an infrared sensor. It emits near-infrared energy and measures whether any significant amount of the IR light is returned.

Bump and feeler sensors: Another popular class of robotic sensing is tactile, or touch-based, done with a bump and feeler sensor. Feelers or whiskers are constructed from sturdy wires. A bump sensor is usually a protruding ring around the robot consisting of two layers.



Source : www.ibm.com

No comments: